Angle deformation of Kähler–Einstein edge metrics on Hirzebruch surfaces
نویسندگان
چکیده
We construct a family of K\"ahler-Einstein edge metrics on all Hirzebruch surfaces using the Calabi ansatz and study their angle deformation. This allows us to verify in some special cases conjecture Cheltsov-Rubinstein that predicts convergence towards non-compact Calabi-Yau fibration small limit. also give an example metric whose singularity is rigid, answering question posed by Cheltsov.
منابع مشابه
Kähler Metrics of Constant Scalar Curvature on Hirzebruch Surfaces
It is shown that a Hirzebruch surface admits a Kähler metric (possibly indefinite) of constant scalar curvature if and only if its degree equals zero. There have been many extensive studies for positive-definite Kähler metrics of constant scalar curvature, especially, Kähler Einstein metrics and scalar-flat Kähler metrics, on existence, uniqueness, obstructions, and relationships with other not...
متن کاملOn Severi varieties on Hirzebruch surfaces
In the current paper we prove that any Severi variety on a Hirzebruch surface contains a unique component parameterizing irreducible nodal curves of the given genus in characteristic zero.
متن کاملAlgebraic Geometric codes on Hirzebruch surfaces
We define a linear code Cη(δT , δX) by evaluating polynomials of bidegree (δT , δX) in the Cox ring on Fq-rational points of the Hirzebruch surface on the finite field Fq. We give explicit parameters of the code, notably using Gröbner bases. The minimum distance provides an upper bound of the number of Fq-rational points of a non-filling curve on a Hirzebruch surface. We also display some punct...
متن کاملSpecial Homogeneous Linear Systems on Hirzebruch Surfaces
The Segre-Gimigliano-Harbourne-Hirschowitz Conjecture can be naturally formulated for Hirzebruch surfaces Fn. We show that this Conjecture holds for imposed base points of equal multiplicity bounded by 8. 1. Linear systems on Hirzebruch surfaces Our goal is to prove Conjecture 4 for linear systems on Hirzebruch surfaces with imposed base points of equal multiplicity bounded by 8. This Conjectur...
متن کاملAnalytic torsion of Hirzebruch surfaces
Using different forms of the arithmetic Riemann-Roch theorem and the computations of Bott-Chern secondary classes, we compute the analytic torsion and the height of Hirzebruch surfaces. 1
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pure and Applied Mathematics Quarterly
سال: 2022
ISSN: ['1558-8599', '1558-8602']
DOI: https://doi.org/10.4310/pamq.2022.v18.n1.a11