Angle deformation of Kähler–Einstein edge metrics on Hirzebruch surfaces

نویسندگان

چکیده

We construct a family of K\"ahler-Einstein edge metrics on all Hirzebruch surfaces using the Calabi ansatz and study their angle deformation. This allows us to verify in some special cases conjecture Cheltsov-Rubinstein that predicts convergence towards non-compact Calabi-Yau fibration small limit. also give an example metric whose singularity is rigid, answering question posed by Cheltsov.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kähler Metrics of Constant Scalar Curvature on Hirzebruch Surfaces

It is shown that a Hirzebruch surface admits a Kähler metric (possibly indefinite) of constant scalar curvature if and only if its degree equals zero. There have been many extensive studies for positive-definite Kähler metrics of constant scalar curvature, especially, Kähler Einstein metrics and scalar-flat Kähler metrics, on existence, uniqueness, obstructions, and relationships with other not...

متن کامل

On Severi varieties on Hirzebruch surfaces

In the current paper we prove that any Severi variety on a Hirzebruch surface contains a unique component parameterizing irreducible nodal curves of the given genus in characteristic zero.

متن کامل

Algebraic Geometric codes on Hirzebruch surfaces

We define a linear code Cη(δT , δX) by evaluating polynomials of bidegree (δT , δX) in the Cox ring on Fq-rational points of the Hirzebruch surface on the finite field Fq. We give explicit parameters of the code, notably using Gröbner bases. The minimum distance provides an upper bound of the number of Fq-rational points of a non-filling curve on a Hirzebruch surface. We also display some punct...

متن کامل

Special Homogeneous Linear Systems on Hirzebruch Surfaces

The Segre-Gimigliano-Harbourne-Hirschowitz Conjecture can be naturally formulated for Hirzebruch surfaces Fn. We show that this Conjecture holds for imposed base points of equal multiplicity bounded by 8. 1. Linear systems on Hirzebruch surfaces Our goal is to prove Conjecture 4 for linear systems on Hirzebruch surfaces with imposed base points of equal multiplicity bounded by 8. This Conjectur...

متن کامل

Analytic torsion of Hirzebruch surfaces

Using different forms of the arithmetic Riemann-Roch theorem and the computations of Bott-Chern secondary classes, we compute the analytic torsion and the height of Hirzebruch surfaces. 1

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pure and Applied Mathematics Quarterly

سال: 2022

ISSN: ['1558-8599', '1558-8602']

DOI: https://doi.org/10.4310/pamq.2022.v18.n1.a11